

P-LINE

HEAT EXCHANGERS IN THE PHARMACEUTICAL INDUSTRY

P-LINE

HEAT EXCHANGERS IN THE PHARMACEUTICAL INDUSTRY

Water is the most commonly used raw material in the pharmaceutical industry. Used not only as the main ingredient in the production of medicines and vaccines, it is also utilized for cleaning technological lines and rinsing of packages.

Water for injection (WFI) is produced from purified water that has been treated to eliminate substances harmful to the human body. In the production of medicines, it plays the role of a solvent, substance for dilution of preparations, as well as means for sterilizing containers, equipment or systems.

Generation, storage, and distribution of WFI takes place in carefully designed systems. The required work parameters are usually determined at the design stage and depend on the parameters of the process for which a given medium is used.

Sanitary aspects in the pharmaceutical industry are extremely important. The WFI systems must meet strict hygiene requirements to prevent product contamination. In order to meet these requirements, Hexonic offers specialized P-line heat exchangers that are ideal to be used in WFI generators, storage and distribution systems, and points of use.

WFI APPLICATIONS

PRODUCTION
OF INJECTABLE
MEDICINES

PRODUCTION OF
BIOTECHNOLOGICAL
PREPARATIONS

PRODUCTION
OF HIGH PURITY
INHALATION
MEDICINES

PRODUCTION
OF OPHTHALMIC
MEDICINES AND
CONTACT LENSES

PRODUCTION
OF ADVANCED
THERAPY

PRODUCTION
OF DIAGNOSTIC
PREPARATIONS

MEDICINAL
PRODUCTS (ATMP):
GENE THERAPY
PRODUCTS

CLEANING OF CONTAINERS, PACKAGING AND INSTALLATIONS

SOMATIC CELL
THERAPY MEDICINAL
PRODUCTS

TISSUE
ENGINEERING
PRODUCTS

HEAT EXCHANGERS IN WFI GENERATORS

Thermal distillation is the most common method used to obtain water for injection (WFI). WFI generator consists of one or more distillation columns in which the process of repeated evaporation and condensation of purified water takes place. As the process is carried out at a high temperature, this method gives complete assurance of the microbiological purity of the WFI water. P-line heat exchangers are used in the WFI generators for preheating, regenerative heating, as well as for final condensation of pure steam and cooling of generated water for injection.

DIAGRAM OF THE WFI GENERATOR WITH P-LINE HEAT EXCHANGERS

WFI - WATER FOR INJECTION

PW - PURIFIED WATER

WFI COLD STORAGE AND DISTRIBUTION SYSTEM

The distilled water generated must be properly stored and distributed to the points of use.

In the cold water storage and distribution system, two P-line heat exchangers are installed. The first one is designed to keep the water temperature low (at 59°F – 86°F) and cool the system. The second heat exchanger periodically heats the WFI water to sterilize the system.

DIAGRAM OF THE WFI COLD WATER STORAGE AND DISTRIBUTION SYSTEM WITH TWO P-LINE HEAT EXCHANGERS INSTALLED

Another option is the system with only one P-line exchanger installed. It then performs both functions. Depending on whether cold water or technical steam flows through the shell, it cools or heats WFI.

WFI — WATER FOR INJECTION

WFI HOT STORAGE AND DISTRIBUTION SYSTEM

Another method of storage and distribution is by keeping the water at a constant high temperature of $176^{\circ}F - 185^{\circ}F$.

The task of the P-line heat exchanger installed in this system is to maintain the temperature using steam or hot water as a working medium.

DIAGRAM OF HOT STORAGE AND DISTRIBUTION SYSTEM WITH A TWO-PASS P-LINE HEAT EXCHANGER INSTALLED

WFI - WATER FOR INJECTION

WFI POINTS OF USE

In order to use WFI it must be cooled to the application temperature, which is usually 77°F to 113°F.

If there are many points of use with the same temperature required, an additional circuit may be separated in the system in which the P-line heat exchanger is installed. Its task is to cool the water to the application temperature.

DIAGRAM OF THE POINT OF USE (POU) WITH THE P-LINE EXCHANGER INSTALLED

Another option is to place a heat exchanger just in front of the point of use (POU).

P-LINE HEAT EXCHANGERS

P-line heat exchangers meet the highest requirements of the pharmaceutical industry. At the same time, they meet its stringent hygiene standards imposed by inspection bodies. They have been designed to minimize the risk of contamination and to ensure safe and sterile work.

APPLICATION

PHARMACEUTICAL INDUSTRY

OTHER

WFI GENERATOR

FOOD INDUSTRY

WFI HOT STORAGE AND DISTRIBUTION

DAIRY INDUSTRY

WFI COLD STORAGE AND DISTRIBUTION

BREWING INDUSTRY

WFI POINT OF USE

CLEAN STEAM GENERATION

WHY CHOOSE HEXONIC P-LINE HEAT EXCHANGERS?

DESIGNED TO OPERATE
IN PHARMACEUTICAL
PRODUCTION

3-A CERTIFIED

MADE ENTIRELY
OF STAINLESS STEEL

ONE-, TWO-, AND FOUR-PASS TYPES

HORIZONTAL AND VERTICAL MODELS AVAILABLE

SURFACES THAT
COME INTO CONTACT
WITH PURE MEDIUM
HAVE BEEN POLISHED
TO RA ≤ 0.5 µM
ROUGHNESS

MANUFACTURED IN ACCORDANCE WITH CGMP, PED, ASME

P-LINE DESIGN

12

the tubes, expanded using the pressure method, are welded to the external tubesheet using pure argon shield method

TECHNICAL DATA

STANDARD LOCATION OF CONNECTIONS:

K1 / K4 — inlet / outlet tube side (hygienic side)K3 / K2 — inlet / outlet shell side (service side)

EXEMPLARY MEDIA

SHELL SIDE

- WATER
- STEAM
- OTHER (CONSULT THE MANUFACTURER)

TUBE SIDE

— PHARMACEUTICAL PRODUCT

WORKING PARAMETERS

TUBES

MAX. TEMPERATURE VITON — 284°F SILICON — 249°F*

MIN. TEMPERATURE
VITON — 1.4°F*
SILICON — -13°F

MAX. PRESSURE
VITON — 145 PSI
SILICON — 145 PSI

SHELL

MAX. TEMPERATURE — 392°F MIN. TEMPERATURE — -13°F MAX. PRESSURE — 145 PSI

* PARAMETERS FOR P-050: MAX. TEMPERATURE — 284°F MIN. TEMPERATURE — -13°F

TECHNICAL PARAMETERS

Туре	Dimensions						Flow	Tube	Heat exchange
	A	В	Type 1P	C Type 2P	Type 4P	ØDz	types	diameter	area
	in	in	in	in	in	in	-	in	ft²
0-050.070.08	6.9	27.9	34.6	_	_	2.4	1P	0.3	3.5
-050.110.08	6.9	39.7	46.5	-	-	2.4	1P	0.3	4.9
P-050.140.08	6.9	51.5	58.3	-	-	2.4	1P	0.3	6.2
P-080.070.08	11.8	20.4	39.6	-	-	3.5	1P	0.3	4.9
-080.110.08	11.8	37.7	56.9	-	-	3.5	1P	0.3	8.2
P-080.140.08	11.8	49.5	68.7	-	-	3.5	1P	0.3	10.5
P-100.070.08	12.8	20,4	41.8	-	-	4.5	1P	0.3	8.2
P-100.110.08	12.8	37.7	59.2	-	-	4.5	1P	0.3	13.8
-100.140.08	12.8	49.5	71	-	-	4.5	1P	0.3	17.6
P-125.110.08	13.8	37.7	58,9	50.9	-	5.5	1P, 2P	0.3	21
P-125.140.08	13.8	49.5	70.7	62.8	-	5.5	1P, 2P	0.3	26,8
P-125.190.08	13.8	68	89.2	81.3	-	5.5	1P, 2P	0.3	35.9
P-150.110.08	14.6	37.8	62,1	49.9	-	6.3	1P, 2P	0.3	30.8
P-150.140.08	14.6	49.61	73.9	61.7	-	6.3	1P, 2P	0.3	39.3
P-150.190.08	14.6	68.1	92.4	80.3	-	6.3	1P, 2P	0.3	52.5
P-200.110.08	18.1	36.4	71.6	50.1	50.1	8.6	1P, 2P, 4P	0.3	45.6
-200.140.08	18.1	48.2	83.4	61.9	61.9	8.6	1P, 2P, 4P	0.3	58
-200.190.08	18.1	66.7	101.9	80.4	80.4	8.6	1P, 2P, 4P	0.3	77.5
P-250.110.08	21.9	36.5	77.2	51.1	51.1	10.7	1P, 2P, 4P	0.3	84
P-250.140.08	21.9	48.3	89.1	62.9	62.9	10.7	1P, 2P, 4P	0.3	107
P-250.190.08	21.9	66.8	107.6	81.4	81.4	10.7	1P, 2P, 4P	0.3	143
P-050.070.12	6.9	27.9	34.6	-	-	2.4	1P	0.5	2
P-050.110.12	6.9	39.7	46.5	-	-	2.4	1P	0.5	2.8
P-050.140.12	6.9	51.5	58.3	-	-	2.4	1P	0.5	3.6
P-080.070.12	11.8	20.4	39.6	-	-	3.5	1P	0.5	4.6
P-080.110.12	11.8	37.7	56.9	-	-	3.5	1P	0.5	7.7
P-080.140.12	11.8	49.5	68.7	-	-	3.5	1P	0.5	9.8
P-100.070.12	12.8	20.4	41.8	-	-	4.5	1P	0.5	6.3
P-100.110.12	12.8	37.7	59.2	-	-	4.5	1P	0.5	10.5
P-100.140.12	12.8	49.5	71	-	-	4.5	1P	0.5	13.4
P-125.110.12	13.8	37.7	58.9	50.9	-	5.5	1P, 2P	0.5	17.8
P-125.140.12	13.8	49.5	70.7	62.8	-	5.5	1P, 2P	0.5	22.7
P-125.190.12	13.8	68	89.2	81.3	-	5.5	1P, 2P	0.5	30.3
P-150.110.12	14.57	37.8	62.1	49.9	-	6.3	1P, 2P	0.5	21.8
P-150.140.12	14.57	49.6	73.9	61.7	-	6.3	1P, 2P	0.5	27.9
P-150.190.12	14.57	68.1	92.4	80.3	-	6.3	1P, 2P	0.5	37.3
P-200.110.12	18.11	36.4	71.6	50.1	50.1	8.6	1P, 2P, 4P	0.5	39.2
P-200.140.12	18.11	48.2	83.4	61.9	61.9	8.6	1P, 2P, 4P	0.5	49.9
P-200.190.12	18.11	66.7	101.9	80.4	80.4	8.6	1P, 2P, 4P	0.5	66.6
P-250.110.12	2.8	36.5	77.2	51.1	51.1	10.7	1P, 2P, 4P	0.5	73.2
P-250.140.12	21.8	48.3	89.1	62.9	62.9	10.7	1P, 2P, 4P	0.5	93.2
-250.190.12	21.8	66.8	107.6	81.4	81.4	10.7	1P, 2P, 4P	0.5	124.6

 $H-horizontal \mid V-vertical \mid 1P-single-pass \mid 2P-two-pass \mid 4P-four-pass$ All dimensions and technical data are approximate only and may be changed without further notice.

Туре		Weight		Tube side capacity			Shell side
	Type 1P	Type 2P	Type 4P	Type 1P	Type 2P	Type 4P	capacity
	lb	lb	lb	gal	gal	gal	gal
P-050.070.08	22.1	_	_	0.1	_	-	0.3
P-050.110.08	26.4	_	_	0.2	-	-	0.4
P-050.140.08	30.7	_	_	0.2	-	-	0.6
P-080.070.08	68.5	_	_	0.4	-	-	0.8
P-080.110.08	79.0	_	_	0.5	-	-	1.2
P-080.140.08	86.2	_	_	0.6	-	-	1.5
P-100.070.08	70.9	_	_	0.6	-	-	1.3
P-100.110.08	86.7	-	_	0.9	-	-	2.1
P-100.140.08	97.4	_	-	1.0	-	-	2.6
P-125.110.08	128.1	141.8	-	1.4	0.8	-	3.0
P-125.140.08	143.0	156.8	-	1.6	1.0	-	3.8
P-125.190.08	168.3	182.0	_	1.9	1.3	_	5.0
P-150.110.08	194.4	210.7	_	2.0	1.2	_	7.5
P-150.140.08	211.9	228.2	_	2.3	1.5	_	7.9
P-150.190.08	252.3	268.6	_	2.8	1.9	_	9.8
P-200.110.08	298.2	310.7	311.6	4.2	1.8	1.8	8.0
P-200.140.08	336.4	348.9	349.8	4.6	2.2	2.2	10.0
2-200.190.08	396.3	408.8	409.7	5.2	2.8	2.8	13.2
P-250.110.08	414.9	475.2	461.4	8.4	3.5	3.5	11.7
P-250.140.08	472.3	532.5	518.8	9.1	4.3	4.2	14.8
P-250.190.08	562.3	622.5	608.8	10.2	5.4	5.3	19.5
P-050.070.12		-	-	0.1	-	-	0.3
P-050.110.12	22.0	_	_		_	=	
	26.2	_	_	0.2	_		0.5
P-050.140.12	30.3			0.2			0.6
P-080.070.12	72.5	-	-	0.5	_	-	0.6
P-080.110.12	86.0	_	_	0.6	_	-	1.0
P-080.140.12	95.1	_	_	0.7	_	-	1.2
P-100.070.12	74.1	-	-	0.7	-	=	1.2
P-100.110.12	92.1	-	-	0.9	-	-	1.9
P-100.140.12	104.4	-	_	1.1	-	-	2.4
P-125.110.12	141.0	154.7	_	1.6	1.1	-	2.6
P-125.140.12	159.6	173.3	-	1.8	1.3	=	3.3
P-125.190.12	191.4	205.1	-	2.3	1.7	-	4.3
P-150.110.12	201.9	218.2	-	2.1	1.3	=	7.3
P-150.140.12	221.8	238.1	_	2.4	1.6	=	7.5
P-150.190.12	266.3	282.7	-	3.0	2.1	=	9.3
P-200.110.12	327.3	339.8	340.7	4.7	2.4	2.4	6.9
P-200.140.12	373.9	386.3	387.2	5.3	2.9	2.9	8.7
P-200.190.12	446.8	459.2	460.1	6.1	3.7	3.7	11.5
P-250.110.12	470.7	530.9	517.2	9.4	4.6	4.5	9.7
P-250.140.12	544.3	604.5	590.8	10.4	5.6	5.5	12.3

^{*} Weight for the horizontal exchanger model.

 $H-horizontal \mid V-vertical \mid 1P-single-pass \mid 2P-two-pass \mid 4P-four-pass$ All dimensions and technical data are approximate only and may be changed without further notice.

		Connection size			
Type	Type and material of connections	Type 1P	Type 2P	Type 4P	
-050.070.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	1", 3"	-	_	
-050.110.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	1", 3"	-	=	
-050.140.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	1", 3"	-	-	
-080.070.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3/2", 3/2"	_	=	
-080.110.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3/2", 3/2"	-	-	
-080.140.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3/2", 3/2"	-	-	
-100.070.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 2"	-	-	
-100.110.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 2"	-	-	
-100.140.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 2"	-	-	
-125.110.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 3"	2", 2"	-	
-125.140.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 3"	2", 2"	-	
-125.190.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 3"	2", 2"	-	
-150.110.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3", 3"	3", 2"	-	
-150.140.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3", 3"	3", 2"	-	
-150.190.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3", 3"	3", 2"	=	
-200.110.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 3"	4", 2"	4", 2"	
-200.140.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 3"	4", 2"	4", 2"	
-200.190.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 3"	4", 2"	4", 2"	
-250.110.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 4"	4", 3"	4", 2"	
-250.140.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 4"	4", 3"	4", 2"	
-250.190.08	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 4"	4", 3"	4", 2"	
-050.070.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	1", 3"	_		
-050.110.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	1", 3"	-	-	
-050.140.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	1", 3"	_	-	
-080.070.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3/2", 3/2"	-	-	
-080.110.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3/2", 3/2"	_	-	
-080.140.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3/2", 3/2"	_	-	
-100.070.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 2"	_		
-100.110.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 2"	-	-	
-100.140.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 2"	-	-	
-125.110.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 3"	2", 2"	-	
-125.140.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 3"	2", 2"	=	
-125.190.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	2", 3"	2", 2"	-	
-150.110.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3", 3"	3", 2"	-	
-150.140.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3", 3"	3", 2"	-	
-150.190.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	3", 3"	3", 2"	-	
-200.110.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 3"	4", 2"	4", 2"	
-200.140.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 3"	4", 2"	4", 2"	
-200.190.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 3"	4", 2"	4", 2"	
-250.110.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 4"	4", 3"	4", 2"	
-250.140.12	FLANGE ASME B16.5 #150 SORF, TRI-CLAMP ASME BPE Type B, SS	4", 4"	4", 3"	4", 2"	

^{*} Weight for the horizontal exchanger model.

 $H-horizontal\mid V-vertical\mid 1P-single-pass\mid 2P-two-pass\mid 4P-four-pass$ All dimensions and technical data are approximate only and may be changed without further notice.

MOUNTING

P-line heat exchangers can be installed vertically or horizontally depending on the application and available space.

HORIZONTAL MOUNTING

2P AND 4P HEAT EXCHANGER

VERTICAL MOUNTING

EXEMPLAR DESIGNATION

PRODUCT LINE

hexonic com